
Report

Mullvad Leta Penetration Test

Albin Eldstål-Ahrens, Alexander Alasjö

Project Version Date

MUL014 v1.1 2023-04-20

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

Executive summary

Between 2023-03-27 and 2023-03-31 Assured Security Consultants performed a web

application penetration test on ”Leta”, a Google search proxy implementation by Mullvad

VPN. Mullvad Leta (staging and production) was in scope. The test focused on two

primary properties of the application: security and user privacy. Testing was carried out in

accordance with OWASP Web Security Testing Guide.

This report lists the security issues found, along with recommendations for fixing or

mitigating them. In our conclusions we discuss the issues and address apparent patterns

in areas where security is lacking.

Issues were found with the following risk severity assessments (number of issues):

Critical 0 High 0 Medium 0 Low 3 Note 3

The penetration test found two potential user privacy issues related to logging and search

query caching. We also found a potential security issue with Google search results’ HTML

content being rendered in the Leta search results, with the risk of Cross-Site Scripting

should the Google custom search API be manipulated to include harmful HTML or

JavaScript.

Overall, Mullvad Leta is well contained with a small attack surface and good measures

have been implemented to strengthen privacy as well as security.

Our recommendations for mitigating the identified security and/or privacy issues can be

summarized as follows:

• Implement a Content Security Policy adhering to the principle of least privilege to

avoid having untrusted third-party content injected into Leta.

• Consider generating search results based on plain text descriptions from the Google

custom search API.

• Properly set the Strict-Transport-Security header.

• Restrict unnecessary logging of user data in production environments.

• Consider storing search terms in a hashed form to limit exposure of sensitive

queries should the cache storage leak.

• Consider clearing cached search entries after expiration.

Assured would like to thank Mullvad representatives Hank, Oskar and Josh for their

support during this penetration test. We are happy to answer any questions and provide

further advice.

i

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

Contents

1 Introduction 1

1.1 Background . 1

1.2 Constraints and disclaimer . 1

1.3 Project period and staffing . 1

1.4 Risk rating . 1

1.4.1 OWASP Risk Rating Methodology . 1

2 Scope and methodology 3

2.1 Scope . 3

2.1.1 Penetration test of Mullvad Leta . 3

2.2 Methodology . 3

2.2.1 Web application penetration test . 3

2.2.2 Tools used . 3

3 Observations 4

3.1 Configuration and Deployment Management Testing 4

3.1.1 Low Content Security Policy (CSP) missing 4

3.1.2 Low Partial logging of unique user ID 4

3.1.3 Note HTTP Strict Transport Security Header Missing 5

3.2 Client-side Testing . 6

3.2.1 Low Potential Cross-Site Scripting (XSS) via Google results 6

3.3 Business Logic Testing . 7

3.3.1 Note Search terms never removed from cache 7

3.4 Other findings . 7

3.4.1 Note Plaintext search queries in cache database 7

4 Observations and coverage 8

5 Conclusions and recommendations 11

5.1 Privacy . 11

5.2 Security . 11

5.3 Recommendations . 12

ii

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

1 Introduction

1.1 Background

Assured AB (Assured) was contracted to perform a web application penetration test and

web server security review of ”Leta”, a Google search proxy implemented by Mullvad

VPN.

1.2 Constraints and disclaimer

This report contains a summary of the observations made during the project period. This

report should not be considered as a complete list of all vulnerabilities, security flaws

and/or misconfigurations.

1.3 Project period and staffing

Assured started the project on 2023-03-27 and finished on 2023-03-31.

This report was last reviewed on 2023-04-20.

Involved in the penetration testing were Assured consultants Albin Eldstål-Ahrens and

Alexander Alasjö.

1.4 Risk rating

1.4.1 OWASP Risk Rating Methodology

In this report we have assessed the severity of issues and identified vulnerabilities

according to the OWASP Risk Rating Methodology [1].

Table 1: OWASP Risk Rating overall severity model

Overall risk severity

HIGH Medium High Critical

MEDIUM Low Medium High

LOW Note Low Medium
Impact

LOW MEDIUM HIGH

Likelihood

As Table 1 visualizes, the overall risk assessment is determined from a combined likelihood

and impact of an identified vulnerability or security issue. A value from 0 to 9 is assessed

for each variable, where 0-2 is determined LOW, 3-5 is MEDIUM and 6-9 is HIGH.

1

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

Likelihood is dependent on attributes related to threat actors and the identified

vulnerability, with factors such as: the skill level and motivations of the threat agents; how

easily the vulnerability can be found and exploited, and; how likely an exploit may be

detected.

Impact depends on technical and business factors, such as: level of loss of confidentiality,

integrity, availability and accountability; potential financial damage; potential brand

damage, and; potential violations of privacy.

Please note that the severity assessment is made by Assured consultants and ratings

may differ from the resource owners’ ratings.

2

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

2 Scope and methodology

2.1 Scope

2.1.1 Penetration test of Mullvad Leta

The web application targets in scope were as follows:

• https://leta.mullvad.net (production)

• Leta, in a staging environment.

Source code, user accounts and root access to the staging web server were provided to

the testers by Mullvad.

2.2 Methodology

2.2.1 Web application penetration test

Testing was carried out in accordance with the OWASP Web Security Testing Guide (WSTG,

latest version) [2]. A complete WSTG checklist is included in Section 4.

2.2.2 Tools used

• Burp Suite Professional

• cURL

• subfinder

• ent

• testssl.sh

3

https://leta.mullvad.net

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

3 Observations

These are the observations made during the penetration test of Mullvad Leta.

3.1 Configuration and Deployment Management Testing

3.1.1 Low Content Security Policy (CSP) missing

Likelihood: MEDIUM (3), Impact: LOW (2)

The web application is served without an explicit Content Security Policy (CSP) [3]. CSP is

a way for web applications to instruct the client to restrict access to dynamic content

such as scripts and static content such as media, based on their origin. It can also limit

which origins may embed the web page in an iframe. The purpose of this is to prevent the

exploitation of script injection (XSS) vulnerabilities found elsewhere in the application, to

prevent clickjacking, and to be able to report violations of the CSP. OWASP provides good

practices on CSP in their cheat sheet series [4].

A missing CSP means the user’s browser is allowed to include scripts and media from all

sources, including external domains and scripts embedded in the document. The CSP

presents an additional safeguard against script injections and other cross-origin

interaction.

An optimal CSP allows only the application’s own scripts. In addition, a nonce can be

employed to further limit the possibility of including malicious scripts. The CSP can be

implemented as a Content-Security-Policy header or a meta http-equiv tag.

We recommend configuring a Content Security Policy (CSP) for all documents, adhering

to the principle of least privilege.

3.1.2 Low Partial logging of unique user ID

Likelihood: LOW (2), Impact: MEDIUM (3)

Account numbers and unique user identifiers are redacted when passed to the logging

facility. The redaction removes all but the last four characters of either ID.

In production, the log level is set to INFO. At this level, a unique user UUID is logged when a

user reaches their daily quota. The logged UUID is redacted, as shown in Example 1.

Example 1: Excerpt from application log

[08:03:42.027] INFO: User reached query quota

userId: "********-****-****-****-********3c24"

The account number is only logged at the DEBUG level, and with similar redaction. DEBUG

log entries are disabled in production. With four hexadecimal digits of a UUID visible, the

4

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

maximum entropy of the revealed data is 16 bits, i.e. 65 536 different combinations. This

may not be sufficiently anonymized, in case log data is accessed by an unauthorized

party.

We recommend disabling user identifiable log entries entirely in production, and

removing the debug calls as soon as the product is ready for release. This is a preemptive

measure to prevent accidental exposure in the future.

3.1.3 Note HTTP Strict Transport Security Header Missing

The responses from the web server do not contain a Strict-Transport-Security header.

HTTP Strict Transport Security (HSTS) is a feature for browsers and HTTP clients to record

whether a site or service should only be accessed over HTTPS. Once a service has been

accessed over HTTPS with a Strict-Transport-Security response header, the client

should remember this feature and henceforth never try to access the service over plain

HTTP. See the OWASP Cheat Sheet on HSTS [5] for more information.

In cases where a sensitive cookie or header value is passed over plain HTTP, the sensitive

content could be leaked to a network-adjacent attacker. The attacker could be passively

sniffing for HTTP requests or use tools such as sslstrip to force clients to connect over

plain HTTP to perform man-in-the-middle attacks.

While Leta does not serve any content over plain HTTP and the authentication cookie is

only transmitted over HTTPS, it is still advised to serve relevant security headers. We

noticed an intent to serve the HSTS header in the staging server’s Nginx site

configuration, but an edge-case misconfiguration omitted the header from the server’s

responses (for all but TRACE requests).

We recommend ensuring that the Strict-Transport-Security response header is

properly set as it is good practice to serve this header to inform clients that they should

only connect to the server over TLS (HTTPS).

5

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

3.2 Client-side Testing

3.2.1 Low Potential Cross-Site Scripting (XSS) via Google results

Likelihood: LOW (2), Impact: MEDIUM (4)

HTML snippets received from the Google API are inserted in the client side document

without sanitization, as seen in Example 2. Should the HTML contain JavaScript elements,

theywill execute in the user’s context as if theywere received from the Leta domain.

While it is not likely that the Google custom search response API should contain harmful

JavaScript or HTML, it cannot be ruled out: a recently published vulnerability in a

Microsoft Azure service allowed anyone to change Bing search results for certain queries

indeed resulting in Cross-Site Scripting in the Bing search results1.

Example 2: SearchResults.svelte, raw HTML output from Google search result

28 {#if item.htmlSnippet}

29 <p>{@html item.htmlSnippet}</p>

30 {/if}

The potential impact of malicious JavaScript is limited in this application. The

authentication token cookie is properly protected from JavaScript access, and the service

itself exposes very few API endpoints. One possible attack is to silently redirect the user to

a phishing page and trick them into providing their Mullvad account number to a third

party.

We recommend using only the plain-text description from the Google results, rather than

trusting HTML from an external party. A well-crafted CSP (see Finding 3.1.1) could also

mitigate this issue to some extent.

1https://www.wiz.io/blog/azure-active-directory-bing-misconfiguration

6

https://www.wiz.io/blog/azure-active-directory-bing-misconfiguration

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

3.3 Business Logic Testing

3.3.1 Note Search terms never removed from cache

All search queries and results are added to a cache database automatically. A limited

time-to-live (TTL) is set on cached results, to avoid returning stale cached results on new

queries. If a user specifies the option to only search in cached results, this TTL is ignored.

No mechanism exists to remove expired searches and results from the database.

In the event of a security breach, an attacker is able to extract a history of search terms

since the database was last restarted or purged. Each search entry is also indirectly

associated with the timestamp of its last use (i.e. one TTL before the stored expiration

date).

A more accessible avenue of enumeration is to query the API for cached results. This

allows any user to determine if an exact search term is present in the cache, but does not

reveal the last time of use.

We recommend setting a hard expiration time for new entries, and clearing entries from

the database upon expiration. The built-in expiration mechanism of redis is already used

to purge each user’s quota entries at the end of each day, and should be suitable and

robust for this purpose as well. If the presence of search terms (e.g. personally identifiable

terms) is considered sensitive, we also recommend allowing users to exempt their

searches from caching.

3.4 Other findings

3.4.1 Note Plaintext search queries in cache database

The search feature includes a redis database containing a cache of recent searches and

their results. While the search is not mapped to any user, the search terms themselves

may be considered sensitive information in some cases.

In the event of a security breach, an attacker is able to recover search terms and their

associated time stamps.

We recommend hashing search terms before insertion/lookup in the cache database.

Since search term cache lookups are only performed with exact matching, this should not

affect functionality.

7

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

4 Observations and coverage

The tables in this section cover the OWASP Web Security Testing Guide tests as in the

latest version at the time of writing this report [2].

Status codes for each test are defined as:

• ”Pass”

• ”Fail” (issues found)

• ”N/A” (not applicable for this application)

• ”-” (test could not be fully carried out due to time constraint, missing requisites or

being out of scope for this test)

We may have findings even for items that pass tests.

Section/Item Status Note

Information Gathering

WSTG-INFO-01 Conduct Search Engine Discovery Reconnaissance for Information Leakage Pass

WSTG-INFO-02 Fingerprint Web Server Pass

WSTG-INFO-03 Review Webserver Metafiles for Information Leakage Pass

WSTG-INFO-04 Enumerate Applications on Webserver Pass

WSTG-INFO-05 Review Webpage Content for Information Leakage Pass

WSTG-INFO-06 Identify Application Entry Points Pass

WSTG-INFO-07 Map Execution Paths Through Application Pass

WSTG-INFO-08 Fingerprint Web Application Framework Pass

WSTG-INFO-09 Fingerprint Web Application N/A

WSTG-INFO-10 Map Application Architecture Pass

Configuration and Deployment Management Testing

WSTG-CONF-01 Test Network Infrastructure Configuration Pass

WSTG-CONF-02 Test Application Platform Configuration Fail 3.1.2

WSTG-CONF-03 Test File Extensions Handling for Sensitive Information Pass

WSTG-CONF-04 Review Old Backup and Unreferenced Files for Sensitive Information Pass

WSTG-CONF-05 Enumerate Infrastructure and Application Admin Interfaces Pass

WSTG-CONF-06 Test HTTP Methods Pass

WSTG-CONF-07 Test HTTP Strict Transport Security Pass

WSTG-CONF-08 Test RIA Cross Domain Policy N/A

WSTG-CONF-09 Test File Permission Pass

WSTG-CONF-10 Test for Subdomain Takeover Pass

WSTG-CONF-11 Test Cloud Storage N/A

WSTG-CONF-12 Testing for Content Security Policy Fail 3.1.1

WSTG-CONF-13 Test Path Confusion Pass

Identity Management Testing

WSTG-IDNT-01 Test Role Definitions N/A

WSTG-IDNT-02 Test User Registration Process N/A

WSTG-IDNT-03 Test Account Provisioning Process N/A

WSTG-IDNT-04 Testing for Account Enumeration and Guessable User Account Fail Accepted

WSTG-IDNT-05 Testing for Weak or Unenforced Username Policy N/A

Authentication Testing

WSTG-ATHN-01 Testing for Credentials Transported over an Encrypted Channel Pass

WSTG-ATHN-02 Testing for Default Credentials Pass

WSTG-ATHN-03 Testing for Weak Lock Out Mechanism N/A

WSTG-ATHN-04 Testing for Bypassing Authentication Schema Pass

WSTG-ATHN-05 Testing for Vulnerable Remember Password N/A

WSTG-ATHN-06 Testing for Browser Cache Weaknesses Pass

WSTG-ATHN-07 Testing for Weak Password Policy N/A

WSTG-ATHN-08 Testing for Weak Security Question Answer N/A

WSTG-ATHN-09 Testing for Weak Password Change or Reset Functionalities N/A

8

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

Section/Item Status Note

WSTG-ATHN-10 Testing for Weaker Authentication in Alternative Channel Pass

WSTG-ATHN-11 Testing Multi-Factor Authentication (MFA) N/A

Authorization Testing

WSTG-ATHZ-01 Testing Directory Traversal File Include N/A

WSTG-ATHZ-02 Testing for Bypassing Authorization Schema Pass

WSTG-ATHZ-03 Testing for Privilege Escalation N/A

WSTG-ATHZ-04 Testing for Insecure Direct Object References Pass

WSTG-ATHZ-05 Testing for OAuth Weaknesses N/A

Session Management Testing

WSTG-SESS-01 Testing for Session Management Schema Pass

WSTG-SESS-02 Testing for Cookies Attributes Pass

WSTG-SESS-03 Testing for Session Fixation Pass

WSTG-SESS-04 Testing for Exposed Session Variables Pass

WSTG-SESS-05 Testing for Cross Site Request Forgery Pass

WSTG-SESS-06 Testing for Logout Functionality Pass

WSTG-SESS-07 Testing Session Timeout Pass

WSTG-SESS-08 Testing for Session Puzzling Pass

WSTG-SESS-09 Testing for Session Hijacking Pass

WSTG-SESS-10 Testing JSON Web Tokens N/A

Input Validation Testing

WSTG-INPV-01 Testing for Reflected Cross Site Scripting Pass

WSTG-INPV-02 Testing for Stored Cross Site Scripting Fail 3.2.1

WSTG-INPV-03 Testing for HTTP Verb Tampering N/A

WSTG-INPV-04 Testing for HTTP Parameter Pollution Pass

WSTG-INPV-05 Testing for SQL Injection N/A

WSTG-INPV-06 Testing for LDAP Injection N/A

WSTG-INPV-07 Testing for XML Injection N/A

WSTG-INPV-08 Testing for SSI Injection N/A

WSTG-INPV-09 Testing for XPath Injection N/A

WSTG-INPV-10 Testing for IMAP SMTP Injection N/A

WSTG-INPV-11 Testing for Code Injection Pass

WSTG-INPV-12 Testing for Command Injection Pass

WSTG-INPV-13 Testing for Buffer Overflow N/A

WSTG-INPV-13 Testing for Format String Injection Pass

WSTG-INPV-14 Testing for Incubated Vulnerability Pass

WSTG-INPV-15 Testing for HTTP Splitting Smuggling Pass

WSTG-INPV-16 Testing for HTTP Incoming Requests Pass

WSTG-INPV-17 Testing for Host Header Injection Pass

WSTG-INPV-18 Testing for Server-side Template Injection Pass

WSTG-INPV-19 Testing for Server-Side Request Forgery Pass

WSTG-INPV-20 Testing for Mass Assignment Pass

Testing for Error Handling

WSTG-ERRH-01 Testing for Improper Error Handling Pass

WSTG-ERRH-02 Testing for Stack Traces Pass

Testing for Weak Cryptography

WSTG-CRYP-01 Testing for Weak Transport Layer Security Pass

WSTG-CRYP-02 Testing for Padding Oracle N/A

WSTG-CRYP-03 Testing for Sensitive Information Sent via Unencrypted Channels Pass

WSTG-CRYP-04 Testing for Weak Encryption Pass

Business Logic Testing

WSTG-BUSL-01 Test Business Logic Data Validation Pass

WSTG-BUSL-02 Test Ability to Forge Requests Pass

WSTG-BUSL-03 Test Integrity Checks Pass

WSTG-BUSL-04 Test for Process Timing Pass

WSTG-BUSL-05 Test Number of Times a Function Can Be Used Limits Pass

WSTG-BUSL-06 Testing for the Circumvention of Work Flows Pass

WSTG-BUSL-07 Test Defenses Against Application Misuse Fail 3.3.1

WSTG-BUSL-08 Test Upload of Unexpected File Types N/A

WSTG-BUSL-09 Test Upload of Malicious Files N/A

WSTG-BUSL-10 Test Payment Functionality N/A

Client-side Testing

9

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

Section/Item Status Note

WSTG-CLNT-01 Testing for DOM-Based Cross Site Scripting Pass

WSTG-CLNT-02 Testing for JavaScript Execution Pass

WSTG-CLNT-03 Testing for HTML Injection Fail 3.2.1

WSTG-CLNT-04 Testing for Client-side URL Redirect Pass

WSTG-CLNT-05 Testing for CSS Injection Pass

WSTG-CLNT-06 Testing for Client-side Resource Manipulation Pass

WSTG-CLNT-07 Testing Cross Origin Resource Sharing N/A

WSTG-CLNT-08 Testing for Cross Site Flashing N/A

WSTG-CLNT-09 Testing for Clickjacking Pass

WSTG-CLNT-10 Testing WebSockets N/A

WSTG-CLNT-11 Testing Web Messaging N/A

WSTG-CLNT-12 Testing Browser Storage Pass

WSTG-CLNT-13 Testing for Cross Site Script Inclusion Fail 3.2.1

WSTG-CLNT-14 Testing for Reverse Tabnabbing Pass

API Testing

WSTG-APIT-01 Testing GraphQL N/A

10

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

5 Conclusions and recommendations

Assured was tasked with conducting a penetration test on Mullvad Leta and to assess the

web application with regards to security and privacy. Overall, Mullvad Leta is well

contained with a small attack surface and good measures have been implemented to

strengthen privacy as well as security.

5.1 Privacy

As for privacy issues, we found only two potential issues. First, logged in users are

assigned a random UUID, which is necessary in order to maintain the daily request quota.

When the quota for a user is exceeded, four characters of this UUID are written to an

application log, with the remainder anonymized. While the partial ID is not linked to search

activity, it is also not likely to be necessary in the log files of production servers.

Second, the search query/result caching feature is mainly implemented to increase

performance and reduce cost. As a side effect it reduces privacy as it is possible to

search the cache for exact queries which may inform a user if and if so when a certain

search term was originally searched by another user.

Two pieces of information are stored client-side: a random authentication token and the

user’s preference for cache-only searches. No client fingerprinting or tracking was

found.

The application prevents leakage of referrer data by applying the noreferrer property to

outgoing links. This prevents the link destination from detecting that Leta has been

used.

The nginx web server is configured to explicitly disable both access and error logging,

preventing user activity such as search queries and IP addresses from being included in

these logs.

While the application inherits guessable user account numbers from Mullvad’s other

services, a known and accepted risk, we found that the login endpoint is rate limited and

searches are rate limited while also covered by quota (credits per 24 hours). This greatly

increases the time it would take an attacker to effectively enumerate valid account

numbers, and the implication is not privacy related as there is no search history or

personal information to deduce from knowing an account number.

5.2 Security

Regarding security issues, no known vulnerabilities were identified in the server

architecture or among the application’s dependencies.

A potential security issue resides in the fact that the search feature in Leta employs the

11

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

Google custom search API which returns HTML content rendered directly in the Leta

search results, making Leta vulnerable to Cross-Site Scripting as the content is out of

Mullvad’s control. A proper Content Security Policy and security headers could mitigate

eventual attempts to introduce dynamic content in Leta via Google search results, but

these are currently missing or lacking.

Origin headers are used to prevent cross-site POST requests to the search API, which

would otherwise be a viable target for user quota exhaustion.

The only cookie stored client-side is the authentication token. This authentication cookie

is properly configured with ”Secure”, ”HttpOnly” and ”SameSite=Strict” set, and sessions

are properly invalidated on logout.

While we found that the Strict Transport Security header is not present, except for TRACE

requests, the server does not expose any plain HTTP service and the TLS configuration is

otherwise sound.

5.3 Recommendations

Our recommendations for mitigating the identified security and/or privacy issues can be

summarized as follows:

• Implement a Content Security Policy adhering to the principle of least privilege to

avoid having untrusted third-party content injected into Leta.

• Consider generating search results based on plain text descriptions from the Google

custom search API.

• Properly set the Strict-Transport-Security header.

• Restrict unnecessary logging of user data in production environments.

• Consider storing search terms in a hashed form to limit exposure of sensitive

queries should the cache storage leak.

• Consider clearing cached search entries after expiration.

12

REPORT

Project Version Date

MUL014 v1.1 2023-04-20

References

[1] OWASP, “OWASP Risk Rating Methodology.”

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology, 2019.

[2] OWASP, “OWASP Web Security Testing Guide (latest).”

https://owasp.org/www-project-web-security-testing-guide/latest/, 2023.

[3] Mozilla, “Content Security Policy (CSP).”

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP, 2023.

[4] OWASP, “Content Security Policy Cheat Sheet.” https://cheatsheetseries.owasp.org/

cheatsheets/Content_Security_Policy_Cheat_Sheet.html, 2021.

[5] OWASP, “HTTP Strict Transport Security - OWASP Cheat Sheet Series.”

https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_

Security_Cheat_Sheet.html, 2022.

13

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://owasp.org/www-project-web-security-testing-guide/latest/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html

	1 Introduction
	1.1 Background
	1.2 Constraints and disclaimer
	1.3 Project period and staffing
	1.4 Risk rating
	1.4.1 OWASP Risk Rating Methodology

	2 Scope and methodology
	2.1 Scope
	2.1.1 Penetration test of Mullvad Leta

	2.2 Methodology
	2.2.1 Web application penetration test
	2.2.2 Tools used

	3 Observations
	3.1 Configuration and Deployment Management Testing
	3.1.1 (Low) Content Security Policy (CSP) missing
	3.1.2 (Low) Partial logging of unique user ID
	3.1.3 (Note) HTTP Strict Transport Security Header Missing

	3.2 Client-side Testing
	3.2.1 (Low) Potential Cross-Site Scripting (XSS) via Google results

	3.3 Business Logic Testing
	3.3.1 (Note) Search terms never removed from cache

	3.4 Other findings
	3.4.1 (Note) Plaintext search queries in cache database

	4 Observations and coverage
	5 Conclusions and recommendations
	5.1 Privacy
	5.2 Security
	5.3 Recommendations

